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EXISTENCE AND UNIQUENESS OF TRAVELING WAVES AND 
ERROR ESTIMATES FOR GODUNOV SCHEMES OF 

CONSERVATION LAWS 

HAITAO FAN 

ABSTRACT. The existence and uniqueness of the Lipschitz continuous traveling 
wave of Godunov's scheme for scalar conservation laws are proved. The struc- 
ture of the traveling waves is studied. The approximation error of Godunov's 
scheme on single shock solutions is shown to be O(I)Z\x. 

1. INTRODUCTION 

The field equations expressing the balance laws for one-dimensional homogeneous 
continuous media typically have the form of systems of conservation laws 

(1.1) Ut +f(u)x=0, xEIR, t>O, ucER. 

In this paper, we shall investigate the existence of discrete traveling waves and error 
estimates in the presence of shocks for Godunov's scheme. 

It is well known that in general the initial value problem of (1.1) develops dis- 
continuities in a finite time. Numerical schemes for (1.1) typically have an error of 
0(1) order near the shock which makes the error estimates difficult to obtain. For 
this reason, most theoretical results for numerical schemes are either estimates for 
smooth solutions or about the convergence of the schemes without stating the rate 
of convergence. To obtain error estimates for numerical schemes in the presence of 
shocks, we need to know the existence and stability of discrete traveling waves for 
numerical schemes, [Je], [LX1], [LX2]. Thus, a brief review of the known results 
on the existence and stability of discrete traveling waves of numerical schemes for 
conservation laws and error estimates of these schemes when shocks are present in 
the solutions is in order. Jennings [Je] proved the existence and stability of discrete 
traveling waves for strictly monotone schemes with differentiable fluxes for scalar 
conservation laws. The existence of discrete shock waves of first order accurate 
finite difference schemes for systems of conservation laws was established by Majda 
and Ralston [MR] by using the center manifold theorem, see also [Mi]. Engquist 
and Osher, [EO], proved the stability of their monotone scheme. Smyrlis [Sm] 
showed the stability of a stationary discrete shock for the Lax-Wendroff scheme. 
Szepessy [Sz] studied the L2 stability of stationary discrete shock for a first order 
implicit streamline diffusion scheme. Liu and Xin proved L1 and L2 stability of 
discrete shocks, [LX1], and convergence to piecewise smooth solutions, [LX2], of 
the Lax-Friedrichs scheme for systems of conservation laws. Yu [Yu] proved the 
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existence of discrete shocks for a Lax-Wendroff scheme and studied the stability of 
discrete shocks for Lax-Wendroff schemes with small speed. The error estimates 
for numerical schemes for conservation laws were studied by a number of authors. 
Kuznetsov [Ku] showed that monotone schemes have an upper Li error bound of 
order Ax. Tang and Teng [TT] later proved that the lower bound for the L1 
norm of the error of monotone schemes on linear conservation laws is also of order 

Ax. For nonlinear scalar conservation laws, due to Jennings' results [Je] and that 
monotone schemes are L1 contracting, the L1 norm of the error of the scheme on 
a single shock solution can be shown to be of Ax order. Later, Liu and Xin [LX1] 
showed that for single shock solutions of systems of conservation laws, the L1 error 
of a Lax-Friedrichs scheme is of Ax order except for an initial layer. Recently, Teng 
and Zhang [TZ] obtained the same Ll error estimate for scalar conservation laws 
with piecewise constant initial data, allowing shock interactions. Engquist and Yu 
[EY] obtained local error estimates under some conditions which are satisfied by 
monotone schemes, the E-O scheme and numerically verified for the Lax-Wendroff 
scheme for scalar conservation laws with a Riemann like initial value. Their es- 
timates show that the contribution of the shock to the error decays exponentially 
away from the shock and the error of the location of the computed shock is O(1)Ax. 

Almost all of the above results are either for monotone schemes or for the Lax- 
Wendroff scheme. Monotone schemes are necessarily first order accurate which' 
usually produce a smeared image of shocks while the Lax-Wendroff scheme is highly 
oscillatory and may violate entropy conditions. On the other hand, almost all useful 
high resolution schemes are adaptive and few analytical results involving shocks 
are available for these schemes even though some of them are widely used. This 
makes the study of issues such as the existence of discrete traveling waves and error 
estimates for these schemes and the development of tools that can handle these 
problems a necessity. Some of the major difficulties in analyzing these schemes 
are their adaptiveness and that their flux functions fj+1/2 are Lipschitz continuous 
rather than continuously differentiable. One starting point for attacking these issues 
is Godunov's scheme since it is the base for many higher resolution schemes. We 
note that Jennings' results in [Je] do not cover Godunov's scheme since his proof 
relies heavily on the strict monotonicity of the schemes and differentiability of the 
flux function. 

In this paper, we consider the existence of discrete traveling waves and error 
estimates for Godunov's scheme 

(1.2a) u~~~n+1 = un _(f n _ (1.2a) u .- A(f~/ - fj/) 

where A At/Ax and 

( 1. 2b) 
fj2 

{ maxin >U> Un f(u), if Utln > Un Jj?1/2 
J - 

f(u) if 

Here, we assume the CFL stability condition AmaxUG[-21u+1,21u_] If'(u)l < 1. 
Let us denote the schemes by 

e i of(1.3) ta sa(G 

We intend to establish the existence of the traveling wave of (1.3) that satisfies 



EXISTENCE AND UNIQUENESS OF TRAVELING WAVES 89 

The speed of the traveling wave is 

s = f (u+) - f (Ua) 
U+ -U_ 

For convenience, we assume f" > 0, and that f'(a) = 0 for some constant a. We 
assume that u+ < a < ua because otherwise Godunov's scheme is reduced to the 
upwinding scheme for which G. Jennings [Je] already obtained results. A traveling 
wave solution of the numerical scheme (1.3) is a function, u(x), defined on IR, 
satisfying 

u(x - As) = Gu(x), 
0o j+l1/2 

(1.5) E=O L(+) uX 1/ 
x)x 0 

u(x) u a? as x - +oo. 

For the case where As I/m where 1 and m are integers, the equation of the 
traveling wave is usually written as 

k-I1 k x ~~k\ (k\ U.+ U' u-A(fj+1/2(U')-fj-1/2(u))j k= 0, 1,2 .... ,m m1, 

(1.6) Ui = Uj, U 3 
= Uj-1, 

Uj a? u as j -- boo. 

We define an operator T by 

(1.7) (Tu)j-l = (Gmu)j. 

Then the traveling wave equation (1.7) becomes 

u = Tu, 

(1.8) Uj * u? as j- b oo. 

Our plan is to prove the existence of a one-parameter family of solutions of (1.6) 
for the case where As is rational. Based on these solutions, we construct a Lips- 
chitz continuous traveling wave solution, u(x), of (1.5) for Godunov's scheme. We 
then prove the existence of traveling wave solutions, satisfying (1.5), for Godunov's 
scheme when As is irrational. 

We assume that As > 0. Then there is a point b G (a, ua] such that f (b) = f (u+). 
Our main results are as follows: 

Theorem 1.1. If f is convex and ua > u+, then there is a unique traveling wave 
solution u(x), in the sense of (1.5), of Godunov's scheme which satisfies 

(1.9) j a(x) - V(x) ? (3 + As(2- As) a+ - U-1, 

(1.10) U(x) > b for x < J(u), 

(1.I1) u(x) U+ forx > J(u) +2 

for some J(u) G R and where 
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and 

(1.13) lu(x) - u| < < aexp(-Olx- J(u) 1) for x < J(u) 

for some constant oa, 3 > 0 depending on As and u?. Moreover, the solution is 
Lipschitz continuous with Lipschitz constant lu- -u+. 

It is clear that for any fixed x0, u(xo +j), where u(x) is the traveling wave in the 
sense of (1.5) provided in Theorem 1.1, is a solution of (1.6) when As is rational. 
The following theorem states that the form u(xo + j) includes all solutions of (1.6). 

Theorem 1.2. Let u(x) be the solution of (1.5) and As be rational. Then any 
solution vj of (1.6) can be written as u(xo + j) for some xo E R. 

Remark 1. Statement (ii) of Theorem 1.1 indicates that the discrete shock profile 
remains constant, u+, from a few grid points before the shock to infinity, while 
decay exponentially to u_ after the shock. From j = J(u) + 1 to J(u), the shock 
profile jumps from u+ to b. These phenomena do not occur for strictly monotone 
schemes. The resuts of Theorem 1.1 provide a key element for studying the error 
estimates near shocks for Godunov's scheme in the future. 

Remark 2. We expect to prove, at least when As is rational, that 
00 

E I(GTv)- -u(xo +j - Asn)j 0 as n - oo, 
j=-oc 

by using Corollary 3.12 of this paper and Theorem A of [OR]. This is left to further 
investigations. 

Remark 3. Without restriction (1.5)2, solutions u(x) to (1.5) are not unique, up to 
shifts, when As is rational. 

We consider the initial value problem (1.1) with 

(1.14) 2(x, 0) U= { ,If x < x0, 
u+, if x > xo, 

where u_ > u+. The solution of (1.14) is the shock 

(1.15) w(x, t) = f, if x < st + xo, 
u+, if x > st+ xo 

where s = (f (u+) - f (u_))/(u+ - u_) is the shock speed. 

Theorem 1.3. Let 0 be the solution of (1.1) with initial value (1.14) given by 
Godunov's scheme. Then the L1 norm of the approximation error satisfies 

00 1 As(1 -As) 
(1.16) E u 12 w(jAx,nA\t)I < (6+- ( - ))| u-1-. 

j=-00 

Remark 4. Although our results are for Godunov's scheme, the methods and results 
are expected to be valid for general strict 11-contracting schemes 

U.n+l = (G(u)) = uQn-A(Fj+1/2(u) -Fj_1/2(u)) 
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We say a scheme is strictly 11-contracting if for any u - v E 11 which is neither 
nonpositive a.e. nor nonnegative a.e., the inequality 

00 00 

S l(Gk(U))j - (Gk(V))j < Uj -_ 
j=-00 J=-00 

holds for sufficiently large k. 

This paper is divided into four sections after this one. In ?2, we review some well 
known properties of Godunov's scheme. In ?3, we prove the existence of traveling 
waves of Godunov's scheme when As is rational and Theorem 1.2 (in Corollary 
3.14). In ?4, we prove the existence result Theorem 1.1. Finally, we show Theorem 
1.3 in ?5. 

Although the formulation and proofs are for the case where the shock speed s is 
positive, the proof for negative shock speed is similar and will be omitted. When 
s = 0, the existence of the discrete shock and error estimates results hold trivially. 

2. PRELIMINARIES 

In this section, we list some of the known properties of Godunov's scheme. 

Lemma 2.1. The Godunov scheme is 11-contracting, that is, for any function Uj 
and vi with u - v E 11, 

(2.1) 1 IGu - Gvl Ill < I lu - vl 111. 

Corollary 2.2. The operator T is 1'-contracting, that is, for any function Uj and 
vj with u-v E l1, 

(2.2) ITua-Tvl Ill < I lu-vl 111. 

Proof. The conclusion follows immediately from (2.1) and the fact that T is a shift 
of Gm. D 

Lemma 2.3. The Godunov scheme is monotone preserving, that is, if u is decreas- 
ing (or increasing), then Gu is also decreasing (or increasing). 

Corollary 2.4. The operator T is monotone preserving. 

Lemma 2.5. If the function Uj is such that Uj -- u? as j - boo where u? 
satisfies 

(2.3) 1/m = A(f (u+) -f (u))/(u+ -u), 

then 
00 

(2.4) E [(Tu)j - uj] = 0. 
j=-00 

Proof. From (1.2), we have 

00 

(2.5) E [a+1 -_a] = -A(f(u+) - f(u)) = As(u+ - u). 
j=-00 
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Then we can prove (2.4) as follows: 
00 00 

[(Tu) -u] [u' 1 - uj] 

00 00 

(2.6) E3 3[U_ uj_Z + E [Uj_1 -Uj] 
*2-6) j=-00 j=-00 

m-1i oc 

[Uk _I Ujk] + (U _-U+) 
k=O j=-o0 

=TnAs(u+ - u) + I(u_--u+) = O. El 

3. EXISTENCE OF TRAVELING WAVES 

In this section, we shall prove the existence of (1.6). We consider TkU(y) where 

[U-) if j < -1, 

(3.1) Uj (y)= u + y(u+ U-) I if j= O, 

tU+) if j > 1, 

and y E [0,1]. We omit y in the following when no ambiguity is expected. Since 
(TkU)j depends on Ui, i = j+l,j+l?1,j+l?2, .,j+1?k, we can see that 

(TkU)j -- u? as j - +oo. The following two lemmas are immediate consequences 
of Corollary 2.4 and Lemma 2.5. 

Lemma 3.1. 
00 

(3.2) E [(TkU)j - Uj] = 0. 
j=-00 

Lemma 3.2. The function (TkU)j is decreasing. 

For a decreasing function uj with u_'c0 > a > ua0, there is a number J(u), such 
that 

(3.3) -~~~~~ { (u3-), if j?<J(u), 

Jj-F1/2+Jk - f (u+1) 7& f (uj), if j > J(u). 

Lemma 3.3. (i) 

(3.4) (TkU)_ > b for j <J(TkU). 

(ii) 

(3.5) b > (T kU)J(TkU)+l > U+. 

(iii) 

(3.6) (TkU)= u+ for j > J(TkU) + 2. 

Proof. Since Tk is a shift of Gmk, it suffices to prove that GkU satisfies the state- 
ments (i), (ii) and (iii) with Tk replaced by Gk U, that, is to prove 

(3.7) (GkU)3 > b for j < J(GkU), 

(3.8) b > (GkU)J(GkU)+l > u+, 
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(3.9) (GkU)j U-u for j > J(GkU) + 2, 

for k = 0, 1, 2, ... For simplicity, we denote u? = G' U in this proof. It is clear 
that (3.7)-(3.9) hold when k = 0. Assume, for induction, that (3.7)-(3.9) hold for 
k = 0, ..., n. We claim that (3.7)-(3.9) are valid for k = n + 1 as well. To this end, 
we first observe that 

(3.10) u > b for jJ(uT) 

Indeed, if j < J(un), thenb<Un <bUn 

(3.11) -un+ = un A (f(Un) - f(Un )) > Un > b. 

For j > J(un) + 2, we have 

(3.12) un+1 = Un A(f(Un+j) f(Un)) = un = u+. 

If < b, then J(un+1) J(uT) since f(UU?n)+2) = f(u+) f(b), and 
hence (3.7)-(3.9) hold. If un > b, then f(Auln) > f(u+) 
implies that J(un+1) = J(un) + 1 and (3.7)-(3.9) hold. Combining both cases, we 
see that (3.7)-(3.9) are valid for k = n + 1 which completes the induction. D 

Corollary 3.4. 

(3.13) J(G?n+lTkU) > J(G nTku) 

for any k > 0 and n > 0. 

Proof. From the proof of Lemma 3.3, we see that 

(3.13) J(G n+l U) > J(G nU). 

The conclusion then follows from the fact that T is a shift of Gm. E 

Lemma 3.5. (TkU)j=o > b for any k > 0. 

Proof. Assume the contrary, i.e (TkU)o < b. Then from Lemma 3.3 (ii), we see 
that J(TkU) < 0. Thus, (TkU)j = u+ for j > 1. This leads to 

00 

0 - [(TkU) j] 
j=-00 

0 

S?[(T U)-j] < (T kU)O-_u_ < O, 
j=-00 

which is a contradiction. LII 

Lemma 3.6. There are some constants ax > 0 and 3 > 0 independent of k > 0 
such that 

(3.14) (TkU)j_ - I < o exp(-01 j ) for j < 0 

and 

(3.15) 0 < J(TkU) < A 
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Proof. When < -1, the operator T is related to that of the upwinding scheme for 
which estimate (3.14) was proved in [Je]. For completeness, we present the proof 
here. Inequality (3.14) holds for any a, /3> 0 when k = 0. Assume, for induction, 
that (3.14) holds for k = 0, 1, ..., n. We claim that (3.14) also holds for k = n + 1 
for some suitable constants a, /3 > 0 independent of n. For simplicity, we denote 
u = TkU in this proof. From Lemma 3.5, we see that uj > b for j < 0. Then, we 
have uj = (G'u) > b for j < 0 and any i > 0. We first consider uj -u_: 

KI - u Iju- A(f(uj) - f(uj-i))I 

(3.16) < (1 - Af'(0o)) luj - u- + Af'(00) lujl - uI 

< [(l- Af'(0O)) + Af'(Oo)e ] exp(-1j3j) 

where f'(0) = (f((u_) - f(b))/(u - b) and we used the convexity of f. Similarly, 
for j < -1, we have 

(3.17) 
1 (T+1 U) 

- 
_+ 

= a - 

< a[1 - Af'(0o) + Af1(Oo)e-1]me1' exp(-3ljl). 

Therefore, (3.14) holds for j <-l if we can find a constant 3 > 0 independent of n 
such that 

(3.18) g(/3) := [1 - Af'(0o) + Af'(0O)e-3]me'l < 1. 

An easy calculation shows that g(0) = 1 and g'(0) = Am(s - f'(0O)) < 0. Thus we 
can choose 3 > 0 such that (3.18) holds. Notice that so far we have not imposed 
any resitriction on a > 0. We can let a be large enough so that (3.14) holds for 
-l < j < 0 as well. This completes the proof of (3.14). 

To prove (3.15), we start with 
00 0 

(3.19) r[(T U)j-u+] - E [(TU>j -_u_] <1- 
j=1 j=-00 

On the other hand, we have 

oo J(Tk U) 

(3.20) Z[(TkU)j -u+] > E [(TkU)j -u+] 

j=1 ~~~~j=1 

> (J(TkU) [b-?u+]. 

Combining (3.20) and (3.19), we prove that 

J(TkU) < a(Fb- 

Corollary 3.7. 

(3.21) -TkU)j = U+ forj > jo 
a 

+2 (3.21) (TU) (1- /3(b - u?) +2 

Lemma 3.8. There exists a subsequence {kn}jn=j of {k} such that kn - oc and 

(3.22) (T U)j 3r v (Tkn?lU) - 

for every j E Z and 
00 00 

(3.23) E I(T knU)j - (Tkn+lU)jI - E lVj - j)- 
J=-00 j=-00 
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Proof. Since TkU are bounded and decreasing, there is a subsequence of {k}, de- 
noted by {kn}, such that kA -' 00, 

(3.24) (Tkn U)3 Vj (TknlU) j 

as n -- oo for every j E 2. It remains to prove (3.23). To this end, we have, for 
any N > 0, 

00 Jo 

lrn 3 |(Tkf U)j k(Tkn+U)j - > |Vj-V 
j=-oo j=-N 

00 Jo 

r lim > (Tkn U)j - (Tkn?+U) j- >3 (T kn U)j -(Tkn?+U)j 
nl-* 00 

(3.25) j=-00 j=-N 

-N-1 

=lim I3 (T knU) j -(Tk7,?+lU)jl 
n-=+-00 

< -a exp(-/3N) - 1 e-03 

where we used Corollary 3.7. Letting N -- o0 in (3.25), we prove (3.23). D 

To proceed, we need more detailed information about the 11-contractiveness of 
Godunov's scheme. 

Lemma 3.9. Let uj, U-j be decreasing functions satisfying u -- u?, u. - u as 
j -*1oo and 

(3.26a) UJ(U) > b, Uj = U+ for j > J(u) + 2, 

(3.26b) UJ(U) > b, Uj = U+ forj > J(U) + 2. 

Then, the difference w = u- u and Gu - Guh satisfy 
00 00 

E (Gu)j -(Gu-)j < u3--u-jl 
j=-00 j=-00 

- 2 Z X(wj wj- <0) min((1- Af'(0j)) wjl, JAf'(0j_y)wp_i1) 
j<min(J(u),J(u)) 

(3.27) - 2X(J(u) = J(Ui))X(wJ(u)+1wJ(u) < O)min(lWJ(u)+?1 |,Af'(0J(u)wJ(u))j) 

- 2X(J(u) < J(Ui))X(wJ(u)+1wJ(u) < 0) 

min((1 + Af/(OJ(u)?l)) WJ(u)+1ll lAf'(OJ(u)WJ(u))I) 
- 2X(J(u) > J(U))X(wJ(U)+1WJ(u) < 0) 

min((1 + Af/(0J(f)+l)) WJ(u)+?j, JAf'(0J(u)wJ(u))j) 

where 

X(A) {1: if A is true, 
if0, fA is false. 

Proof. Without loss of generality, we assume that J(u) < J(u) in this proof. We 
consider the difference wj := UlU: 
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Case I. j < J(u) < J(u). 
In this case, the difference wj satisfies 

(3.28) W= wj - Af/(0j)wj + Af/(Oj-i)wyI 

where f'(0j) = (f (uj) - j- Uj) > f'(b) > 0. 

Case I(i). If wjwjyl > 0, then 

(3.29) iw4l = lwjI - Af'(0j) lwj + Af'(Oj-1) lwj_1I 

Case I(ii). If wjwjyl < 0 and wj (1 - Af'(0j)) > lAf'(Oj-i)wj_ l, then 

(3.30) 1wfl = lw I - Af'(0j)lwjl + Af'(0yj-) wjyll - 2Af'(Oj_l)lwj1l1. 

Case I(iii). If w.wjwl < 0 and wj (1 - Af'(0j)) < lAf'(Ojy,)wj-ll, then 

(3.31) iw'l = lwjl - Af'(0j)lwjl + Af'(Ojyi) wjll - 2(1 - Af'(0j)) wjl. 

Combining Case I (i)-(iii), we obtain 

(3.32) iwl = iwj - Af'(0j) lwj + Af'(Oj_1) lwj_1 
- 2x(wjwj_l < 0) min((l - Af'(0j)) wj , Af'(Oj- )wwj ). 

Case II. j =J(u) + =J(U) + 1. 

For this case, we can prove in the same way as in Case I that 

(3 33) J(U)+l I = lWJ(u)+1 I + Af'(OJ(u,)) lWj(u) I 

- 2X(wJ(u)+1wJ(u) < 0) min(lwJ(u)+1 |, Af (OJ(u)WJ(u) 1). 

Case III. j = J(u) + 1 < J(ui) + 1. 

From (3.5), we can see that UJ(u)+? < b and >J(u)?1 > b and hence wJ(u)+1 < 0. 
Consider WJ(u)?l 

IWiJ(U)+I = lwj(u)+- Af'(OJ(u)+l)WJ(u)+l 

- A(f(UJ(u)+2) - f J(j(u)+l)) + Af'(OJ(u)) lwJ(u) 
(3 34) - 2X(wJ(u)+1wJ(u) < 0) min(lwJ(u)+? - Af'(OJ(u)+l)WJ(u)+l 

- A(f(UJ(u)+2) - f(uJ(u)+l)) , lAf'(OJ(u))WJ(u) ). 

We note that WJ(u)+? and -A(f(uJ(u)+2) - f(uJ(u)+l)) are nonpositive which re- 
duces (3.34) to 

(3.35) 
iWi() ? J(4+Afv()?)- f iUj(u)?1)) + Af'(OJ(u)) lwj(u)I IJ(U)+1 I < lwj(u)+1 I + A(f (UJ(U)+2)- J() ))+ f(0u )I(U 

- 2X(wJ(u)+1wJ(u) <0) min(lWJ(u)+1 (1 - Af'(OJ(u)+l)) IlAf'(OJ(u))WJ(u) ). 

Case IV. J(u) + 2 < j < J(u). 

In this case, wj < 0 and wj < 0 and hence 

(3.36) iw.lI = lwjI + A(f(uj+?) - f(uj)) - A(f(uj) - f(uj-1)). 

Case V. j = J(u) + 1 > J(u) + 1. 

Since both WJ(U)+1 and WJ(I)?l are nonpositive, we have 

IW (-)+,I = lWJ(?)+1 I + A(f(uJ(U)+2) - 
(UJ(u)+2))- A(f (uJ(U)+1) 

- f(uJ(U))). 
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Case VI. ?<J(U)+2. 
In this case, W0 = Wj-O. 

Combining Case I-VI, we obtain (3.27). D 

Theorem 3.10. The function vj (y) obtained in Lemma 3.8 is a family of traveling 
wave solutions of Godunov's scheme parametrized by y E [0, 1], i.e., Tv(y) = v(y). 
Furthermore, these traveling waves satisfy 

00 

(3.37a) E (vj (y) - Uj (y)) = 0, 
j=-oc 

(3.37b) lvj- u_ < a exp(-/3j - J(v) ) for j < J(v), 

(3.37c) Vj > b for j < J(v), 

(3.37d) vj = u+ for j > J(v) + 2 

for some constants oa, /3 > 0 independent of y e [0, 1]. 

Proof. We observe that Tv = limn,00 T(Tk,, U) = v. Therefore, the assertion to 
be proved is equivalent to v = v. To prove this, we assume 

00 

(3.38) E Z vj - vjl = Co > ?, 
-00 

a contradiction. Lemma 2.5 implies that Z' (vj - V-) 0. Then there exist 
j- E Z such that Vj+ -V+ > 0 and vj_ - V < 0. From Lemma 3.3, we can 

see that there are grid points J(v) and J(v)), 

(3.39) 0 < J(v), J(v)< (1< - e)(b- ) 

such that 

vj>b for j < J(v), 

(3.40) VJ(v)+l E [b, u+], 
vj = u+ for j > J(v) + 2, 

and 

VJ > b for j < J(v-), 
(3.41) c)(E)+l E [b,u+], 

v. =u+ for j > J(v)+2. 

Thus, it is clear that 

j+, j < max(J(v), J(v)) + 1. 

We can further choose j+ and j such that 

(3.42) vj j for j between j+ and j_. 

We introduce the following notations: 
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By Lemma 3.8, for any 6 > 0 and r7 > 0, there is a N(c, 97) > 0 such that for 
n > N(C, 7), 

(3.44) JITk-U - Tkn?+UHIl < lv -vjlii ? 6 

and 

(3.45a) I(T U)j- VjI < 97, 

(3.45b) I(T ?U) -vi <97, 

for ji < j <3 2 

Case A. il = 32-1. 

For simplicity, we use the notation 

(3.46) u:= TknU u- := Tkn+lU 

in this proof. By choosing r7 > 0 small enough, we have 

(3.47) (ujl - Uil)(Uj2 - uj2) = (vl - vj1)(vj2 - vj2) + O(1)7 < 0. 

By using the 11-contractiveness of Godunov's scheme and Lemma 3.9, we obtain 

I |v - 
- 
Ill < I ITkn+k-kn (Tkn U) - Tkn+!-kn (Tkn+lU)I1Il 

(3.48) < | GTk- U -GTkn+1 Ul i 

< Ijv - V-1111 - j0(1)I min(lvjl- l j1II IVj2 -vj2 |) 

which is a contradiction. 

Case B. il <32 - 1. 

In this case, we have vj = v; for j, < i < j2 and hence Iuj - ujI < 297. For 
definiteness, we assume that 

(3.49) vi1- vii > 0, v2 -vj2 < 0. 

Since uj - u does not change sign for j > min(J(u), J(U)) + 1, we have 

32 < min(J(u), J(u7)) + 1. 

There are the following three cases for j2- 

Case B(i). 32 < min(J(u), JQ(u)). 

In this case, the difference uj - uO has the form 

wj = wj(I - Af'(0j)) + Af'(Opji)wjyl 

from which we can see that 
(3.50a) 

-Uj+l = Af'(Ojl)(ujl - ijl) + 0(1)7 = Af'(Ojl)(vjl - 1j) + 0(1)97, 

(3.50b)~~~~~~~ ul- = 0 (1) 71 
1 1~~1 - 

(3.50c) uj2 = (1 - Af'(O2 ) (V2 - vj2 ) + 0(1)97. 

Similarly, we can show that 

(3.51a) 
uj2-1 

Uj -1 =O(1)j(vil - Vjl) + 0(1)77 > 0, 
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(3.51b) 
uj2 3-1 - j2i1- - =O(1)1(vj2 - vj2) + 0(1)77 < 0 

where all constants 0(1) are independent of 6 > 0 and r7 > 0. By applying ar- 
guments used in Case A to Uj2-il-1 and ui2-ji-1 we can prove that this case is 
impossible to occur. 

Case B(ii). i2 = min(J(u), J(u)) + 1 and J(u) 7& J(u). 

For large n, the fact that vj2-vi2 < O implies that uj2-uj2 < 0. This together 
with Uj(U) > b and UJ()+?1 > b infer that J(u) < J(u) and hence i2 = J(u) + 1 < 
J(u) + 1. We estimate the difference w = u - u- as follows 

Wj2 = wj2- A(max(f(uj2+1), f(U2)) - f(U21l)) ? A(fQj2)- 
(3.52a) ? - A(f (u2 ))f f(uj21) A A(f (uf2) u ) 2 -1)) 

= Wj2(1 - Af'(Oh2)) + 0(1)7 < 0, 

(3.52b) w= 0(1)9, for ji < i < i2, 

(3.52c) wj1+ = =O(1)0(vil - vjl) + 0(1)97. 

From these calculations, we can see that 

(3.53a) wj2-il-1= O(1)l(v i-)+(1)97, 

(3.53b) Wj2 = O0(1)1(Vj2 -Vj2) + 0(1)97. 

Now we can apply the arguments for Case A to show that this case is also impossible 
to occur. 

Case B(iii). 32 = J(u) + 1 = J(u) ? 1. 

Suppose that j2 = J(ui) + 1 = J(uiii) + 1 for i = 0, 1, ..., K and J(uK?l) K 

JQuK?l) Then as long as ji + i + 1 < j2, the function w'+A satisfies 

(3.54a) w~jj+i+l = 10(1)1(vj1 - vji) + 0(1)71, 

(3.54b) wi+1 = 0(1)97, for ji + i < j< i2, 

(3.54c) wj2= 10(1)1(vj2 -j2) + 0(1)71, 

If j2 -ji-1< K+1, then we can take i = i-i -2 in (3.54) to obtain 

j2 -1 = 10(1) - ?j ) + 0(1)71, 

(3.55c) Wji22 - Jl - 1 = O(1)K(Vj22 2) + 0(1)97, 

which, together with the argument for Case A, implies a contradiction. 
If j2 - il -1 > K + 1, then there are two possibilities: The first possibility is 

that i2 < mini(J(uK?l), jQuK+l)) The argument for Case B (i) can be applied 
to uK?l and uK?1 to yield a contradiction. The second possibility is that i2 = 

min(J(uK?l), JQjK?1))+l Then the fact that w U.+ U < 0, (3.54c), 
32 32 32 

implies that 32 J(u) ? 1 <J(u2) + 1 because otherwise, one would get 

O > uK+1 -K+1 -K+1 > 0 3 U2 3j2 >b- ju+ 
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which is a contradiction. We can then apply the argument for Case B(ii) to prove 
that j2 = J(u) + 1 < J(u) + 1 also leads to a contradiction. These contradictions 
show that Case B(iii) cannot occur. 

Since both Cases A and B which include all possibilities lead to contradictions, 
it is necessary that v = v. Estimates (3.37b, c, d) follow immediately from Lemma 
3.3 and Lemma 3.6. Ol 

Corollary 3.11. Let qj and Oj be two traveling wave solutions, in the sense of 
(1.6), of the same speed, A)s = i/rn, of Godunov's scheme. Then either q3j ? '0j for 
all j or qj < 4)j for all j. 

Proof. The proof of (i) is already contained in that of Theorem 3.10. Ol 

Corollary 3.12. If uj - vj is neither nonpositive a.e nor nonnegative a.e and 
00 j- vj <Xo, then 

00 00 

E I(G nu)j - (G nv)j < E Uj - Vj I 
j=-00 j=-00 

for some n EC ?+. 

The proof is very similar to that of Lemma 3.9 and Theorem 3.10. Since we will 
not use this corollary in this paper, we omit its proof. 

Let v (y) be the family of traveling waves of Godunov's scheme obtained in 
Theorem 3.10. For any x E IR can be uniquely written as x = j + y where j E N 
and y E [0,1). We define, at x = j + y, j E N, y c [0,1), 

(3.56) u(x) = vj(y). 

Theorem 3.13. Assume that A)s is rational. There is a unique, up to a shift, 
Lipschitz continuous traveling wave solution, u(x), x E R, of Godunov's scheme 
in the sense of (1.5). Furthermore, this traveling wave solution is decreasing and 
satisfies 

(3.57a) lu(x) - u < a exp(-jlx - J(u) l) for x < J(u), 

(3.57b) u(x) > b forx < J(u), 

(3.57c) u(x) = u+ for x > J(v) + 2, 

for some constants a, /3> 0. Moreover, the Lipschitz constant of u(x) is lu - u+1. 

Proof. We claim that the function u(x) defined in (3.56) is the traveling wave 
solution. It is clear from the construction of u(x) that for any fixed x, u(x + j) is 
a traveling wave solution in the sense of (1.6). 

We first prove that u(x) is decreasing and Lipschitz continuous. Given any 
x1 < X2, we decompose them as x1 = ji + Yi and X2 = 32 + Y2 where jl, j2 C Z 

and Yi, Y2 E [0, 1). Let vj (y) be the traveling wave solution given in Theorem 3.10. 
Then functions vj+Fj, (Yi) = u( j + x1) and u( j + X2) are also traveling wave solutions 
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in the sense of (1.6) which satisfies 
00 

S (u(j+ X2) - u(j + x1)) 
j=-00 

00 00 

(3.58) = (Vj+j2 (y2) - V(y2)) + (v(y2) - v(yl)) 

+ E (v(yl)-vj?+j (Y1)) = (u+-u-)(x2-x1) < 0. 

Then Corollary 3.11 and (3.58) imply the monotonicity and Lipschitz continuity: 

(3.59) 0 > u(x2) - u(x1) > (u+ - u)(x2 - x1). 

Now, we prove that u(x) satisfies traveling wave equation (1.5). To this end, we 
notice that u(j + x - As) and Gu(j + x) are traveling waves in the sense of (1.6). 
Then Corollary 3.11 and 

00 

S (u(j+x- As)-Gu(j +x)) = O 
j=-00 

imply u(j + x - As) - Gu(j + x) = 0 for all j E Z and hence u(x - As) = Gu(x). 
To prove equation (1.5)2, we observe that 

(3.60) Uj(y) = U(x + y)dx 

where 

(3.61) U( {. u+, if x > 0. 

Using the definition of integral and (3.37a), we obtain 
oo ~~~j+1/2 

u(00 K ? 
- j u(x ? y)dxl j= ce L 4~-1/2 

oo j~~~+1/2 

ui (y) - J U?x/2 y)dxl 
j=-cc 0-1/2 

oo i ~~~~~j+1/2 
00OO /t U(x + y)dx- U(x + y)dx = . 

-1 -1/2~ ~y)xl-0 

The function u(x) obviously satisfies (1.5)3. 
Suppose there is another continuous traveling wave in the sense of (1.5), denoted 

by u1(x). Then, there is a number xo E R such that 

(3.62) j(ul(x + xo) - u(x))dx = 0. 

We claim that u1 (x + xo) = u(x). Indeed, if otherwise, there would be a point x1 
such that u1 (x1 +xo) > u(x1). Both u1 (x1 +xo +j) and u(x1 +j) are traveling wave 
solutions in the sense of (1.6). By Corollary 3.11, we have u1(xl+xo+j) > u(xi+j) 
for all j E Z. This, however, contradicts equation (1.5)2 and (3.62), which proves 
the uniqueness of the solution of (1.5). 
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Estimates (3.57) follow immediately from (3.37) and the fact that u(x) is de- 
creasing. El 

Corollary 3.14. Let u(x) be the solution of (1.5). Then any solution v; of (1.6) 
can be written as vj = u(j + xo) for some xo E R independent of j E E. 

Proof. There is an xo c R such that 
00 

(3.63) E (vj- u(j+xo))=O, 
,=00 

since 
oj+1/2 

E (u(j + xo)-J u(x + xo) dx 
-1/2 

and 

j(u(x + xo) -U(x))dx 

is continuous in xo and - ?oo as xo -* ?oo. The functions u(xo + j) and vj are 
solutions of (1.6). Then Corollary 3.11 and (3.63) imply that vj = u(xo + j) for all 
j E 2. El 

4. EXISTENCE OF TRAVELING WAVES FOR GODUNOV'S SCHEME 

WITH IRRATIONAL As 

In this section, we shall extend our results on the existence of traveling waves of 
Godunov's scheme to the case where As is irrational. We shall prove the existence 
of such traveling waves by taking the limit of a sequence of traveling waves with 
rational As. For this purpose, we need more information on traveling waves with 
rational As. 

Lemma 4.1. Let A)s = I/rn. 
(i) There is a traveling wave solution, v, in the sense of (1.6), of Godunov's scheme 
that satisfies (3.37b, c, d) and 

(4.1) vjs - Vjl < ju+ - u-I + -(As - 1)(u+ - u_) Z.w ~~~~2a 
j7-00 

where 

(4.2) V U= {u,if j < J(v), 
u+, if i > J(v) . 

(ii) Any traveling wave solutions, vj, in the sense of (1.6), of Godunov's scheme 
satisfiy (3.37) for some constant a > 0 and / > 0 and 

00 / 
AXs(1 s 

(4.3) E - < (2 ? 2+ ) | - 

j=-oo 

(iii) The continuous traveling wave solution, u(x), in the sense of (1.5), satisfies 

(4.4) l u(x)-V(x)ldx< (3+ As(1 -As)) ju - l 



EXISTENCE AND UNIQUENESS OF TRAVELING WAVES 103 

where 

(4.5) V(x) = 

Proof. (i) We recall the traveling wave equation 

m-1 
(4.6) vjl = vj - (fAi+/2(v) -j-1/2(V )). 

k=O 

Taking the summation EJ=-N+11 on (1.6), we obtain 

oo J+l-1 m-1 

0 = (u+-vj)-AF(f+- -k 

J=-N+1 j=J k=O 

-N+1-1 

(4.7) = E (j + N)(u+-vj) 
j=-N+1 

+ I(u+ - v+1-) - A , (f+r-n 1-1/2r) 
j=-N+l k=O 

Letting N oo in (4.7), we have 

(48)? (2 ) (u+ -u_) + I(u+ -vj+l)-A (f--f(v Af )) 
L k-oo k=O 

We note that 

?? k-1 00 

E (V _vj)= -A E [fi+1/2-fj-1/21 
(4.8) k-i i=O j=-oo 

=-A 5 [ftO-f_00] = -Ak(f+ - f-). 
i=o 

Plunging (4.8) into (4.7) and using the Rankine-Hugoniot condition, we obtain 

(4.10) 
m-1 J(v k) 

O = -(Ai-s-1)(u+ - u) + : 1: [(U_ -V k) - A(f- f (vj))] 
k=O j=-oo 

m-1 00 r m-1 

+ E -(u+ - vk) - A(f+ - f(vk?i))] + ( - UJ(Vk)+l). 

k=O j=J(Vk)+l k=O 

We introduce the notation 

(4.11) -y:=min(sf+ f?(a) _-S+f-f(a)> 
u1 - a u- -a 
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from which (4.10) becomes 

m-1 J(vk) m-1 00 

(4.12) E u_ -vjkl+ E u+ - v k < -( (- As)Ju- - u+|. E E I i i ~~~~~~~- 2,y 
k=0 j=-oo k=0 j=J(vk)+2 

Then, there is at least one of k = 0,1, ..., m - 1 such that 

J(Vk) 00 

(4.13) E u- -uvk| + E u+ -v k| < -(1-As)Ju- -u+. 
j=-?? j=J(vk)+2 

Now, we let v to be the traveling wave solution provided by Theorem 3.10. Then 
(3.37c, d) hold for vk. From the proof of Lemma 3.6, we see that (3.37b) also holds 
for vk. The function vk is a traveling wave solution that satisfies (4.1) and (3.37b, 
c, d). 

(ii) Let qj be a traveling wave solution provided by Theorem 4.2 with the same 
speed as that of vj that satisfies (3.37) and 

(4.14) E ' - < (1+ <s(Ij2As) lu+ uI 

where 

V fJu_, if j<J(q), 
J lu+, if j > J(q)+1. 

By shifting if necessary, we can assume that J(q) = J(v) and hence Vj = Vj. Since 
j(v)+<VJ(v), < Lemma 51 implies that -j+l < vj for all j, From (3.37b), we have 

-vj-u < K j+1-?u-I < Kaexp(-/3j - J(v) ). 

This proves that v satisfies (3.37b, c) for some constants a, / > 0. We claim 
that any traveling wave of Godunov's scheme satisfies vJ(v)+3 = u+. Indeed, if 
otherwise, i.e. VJ(v)+3 > u+, then vj+1 -j are positive at j = J(v) + 2 and 
negative at j = J(v) which is impossible in view of Corollary 3.11. From the above 
observation, we consider Gnv to see that for j > J(v) + 3, vjn > u+ if and only if 
vn_1 > b. In other words, (4.lb, c) holds for vn for large n and hence holds for v 
itself since it is a traveling wave. 

By Corollary 3.11, either vj > qj for all j or vj < qj for all j holds. If vj > qj for 
all j, then vj > a and qj > a for j < J(v) and vj = oj = u+ < a for j > J(v) + 2 
which yields 

00 

E ivi - Vi 
j=-00 

(4.15a) = 5 vj-u I+IVJ(v)+?-U+ 
j<J(V) 

< 1+ A(2 - As) lu+?-u_ + lu+-u_1. 



EXISTENCE AND UNIQUENESS OF TRAVELING WAVES 105 

If vj < qj, then vj > Oj+l since vj(t,) > b > qJ(v)+l. Then we have 
00 

.1=-oo 

- 5 IVJ - U_j + IVJ(V) - U_ + IVJ(V)+? - U+ I 

(4.15b) j<J(v)-1 

< E 
S 0j+ u-U I + k/J(v)+1 - U+ I + IVJ(v) - U- 

j <J(v) -1 

* (1+ A-(2 A) 1u+ - u_l+ u+ - u_. 

Combining (4.15) we arrive at (4.3). 
(iii) From Theorem 3.13, we can see that J(u(x + y)) = J(u(x)) for y E [0,1). 

Then we have 
00 

5 signr(j-J(u)-)(u(y + j)-Vj ) 

> j(u(x) - V(x))dx - -u+-u 

which, together with statement (ii), yields the desired result. O 

Theorem 4.2. If f is convex and u_ > u+, then there is a unique traveling wave 
solution u(x), in the sense of (1.5), of Godunov's scheme which satisfies 

(4.16a) j lu(x) - V(x)l ? (3+ As(1- As)) I+ - 

(4.16b) u(x) > b for x < J(u), 

(4.16c) u(x)-u+ for x > J(u) + 2, 

for some J(u) E IR and 

(4.16d) lu(x) -u I < a exp(-Ix -J(u) l) for x < J(u) 

for some constant a, 3 > 0 depending on A)s and u?. Moreover, the solution is 
Lipschitz continuous with Lipschitz constant lu - u+. 

Proof. In view of Theorem 3.13 and Lemma 4.1, it remains to prove the assertions 
when As is irrational. To this end, we select a sequence {u_,Jo} L such that 
U-,n * u as n -* oo and A Sn := A(f+- f(u-,n))/(u+ - u,n) = In/mn are 
rational. Then, from Theorem 3.13 and (iii) of Lemma 4.1, there is a traveling 
wave solution u(x, n) connecting u-,n and u+,n which satisfies 

(4.17) / u(x n) -V(x)| < (3 
A 

5n 
(1- 

ASn)) lU, 
- 

l-, 

Note that V(x) in (4.17) is independent of n, which can be achieved by shifting 
u(x, n) if necessary. Furthermore, these traveling waves u(x, n) are Lipschitz con- 
tinuous with Lipschitz constant < ju+ - ?- 1 for large n and satisfy (4.16b,c). 
Thus, there is a subsequence of {u(., n)}, denoted by {u(., n)} again, such that 

(4.18) u(x,n) -* u(x), a.e. as n -* oo. 
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From the uniform Lipschitz continuity of u(., n) and (4.17), it is clear that u(x) is 
Lipschitz continuous and satisfies the traveling wave equation (1.5) and (4.16a, b, 
c). 

From the construction of u(x), we see that 

u(x) = lim (TkU(X- [X]))[X] 
k--+oo 

for some subsequence {nk} of {n}. Let S-A, v(x) -* v(x - As) be the shift 
operator. Then T = (S_ASG)m and hence 

u(x) = lim ((S_AsG)m kU(X- [X]))[X]- 
k--+oo 

Applying the argument used in the proof of (3.14), we can see that (4.16d) holds 
for some constants a,/ > 0 which depend continuously on i/rn and u?. Thus, 
estimate (4.16d) is preserved when passing the limit u-,n -* u_ and hence (4.16d) 
holds for irrational As as well. 

The proof of the uniqueness of solution of (1.5) when As is irrational is similar 
to that of Theorem 3.13 except that we do not have the help from Corollary 3.11. 
Suppose there is another continuous traveling wave in the sense of (1.5), denoted 
by u1(x). Then, there is a number xo E R such that 

(4.19) j(ul(x + xo) - u(x))dx = 0. 

We claim that u1 (x + xo) = u(x). To this end, we let x1 be such that 

(4.20) 
00 ~~~~~~~~~~~~00 

lu1(x1+xo-+j)-u(x1l+j)|= min E 0 u0(x+xo+j)-u(x+j)l 
j=-00 SX[0,1] =-00 

The equation (1.5)2 and (4.19) yield 

(4.21) 
00 00 

E [ul (xi + xo + i -u(x?l + j)] = [ul (xi + xo + x)-u(xi + x)]dx-0. 
j=-00 

0 

If u1 (xi + xo + jo) > u(xi + jo) for some jo E Z, then (4.21) implies that there is 
a ji eE Z such that u1 (x1 + xo + ji) < u(x1 + j1). Then, Lemma 3.9 infers that 

00 00 

E ui (xi+xo+j-Asn)-u(xi +j-Asn) |< E Jul(xi+xo+j)-u(xi +j)l 
-00 -00 

which violates the definition of xo. Thus, we have 

U1 (x1 +xo +j) = u(x +?j) 

for all j E Z and hence 

(4.22) u1 (x1 + xo + A-Asn) = U(X1 + A-Asn). 

Since As is irrational, the set {j - Asn: j C , n E N} is dense in R. Then the 
continuity of traveling waves u1 and u and (4.22) yield the uniqueness desired. Ol 
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5. ERROR ESTIMATES FOR SINGLE SHOCK SOLUTIONS 

In this section, we shall prove that the L1 norm of the approximation error of 
Godunov's scheme on single shock solutions is of Ax order. 

Now, we consider the initial value problem 

Ut + f(u)X = 0, 

(5.1) U(X0) = fU, if x < xO, 

(u+, if x > xO, 

where u_ > u+. The solution of (5.1) is the shock 

(5.2) W(x, t) ={U I- f x < st + xO, 
U+, ifx>st+xo 

where s = (f(u+) - f(u))/(u+- u) is the shock speed. We are concerned with 
the accuracy of the numerical solution, u0, given by Godunov's scheme for the 
initial value problem (5.1). 

Theorem 5.3. Let U0n be the solution of (5.1) given by Godunov's scheme. Then 
the L1 norm of the approximation error satisfies 

(5.3) iuz -w(x,niAt)HL1 = (6+ As( -As)) u+ -u Ix. 

Proof. Without loss of generality, we assume that xo = 0 in (5.1) and (5.2). Let Ox 
be a traveling wave solution provided by Theorem 4.2 with q$j -* u? as j ?oo 
and 

(5.4) ?j qsjlv<?(1i+? ( 2A)) 
j=-oo 

We define 

I }(j+1/2)Ax 

/\X j -1/2)Ax 

We can see from (5.2) that 

ru_, if j <K, 
(5.6) Wj = WK, if j = K, 

lu+, if j > K, 

where K = [st + xo] or [st + xo] + 1. 
There is a jo E Z such that 

00 00 

(5.7) 5 qj+j0-w =l min S j+j--wl :=Co. 
10=+oo .1=-??i Z 
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To estimate Co, we notice that 

00 

<, IO/j -Wj? - u+ -u_l 

j=-00 
00 

< 5 fi j 
j=-Oi 

00 

as~~~~~~ i ?o. Frmteeobevtos we kno tha Co<lu+ - u_ I 

and 

00 

00 

00 

- S, s'tgr(j)(qSj-qSj+j)-3 +? 
j=-00 

as i -* +oo. From these observations, we know that Co ? lu? -u_ 
By using the 11-contracting property of Godunov's scheme, we estimate the L 

norm of the approximation error as 

-00 

00 00 

< 5 un _nj + s |n _-n 

(5.8) 

where in the last step, we used Lemma 5.2. We observe that for all]j, V n-w are 
of the same sign if not 0. This yields that 

00 00 

5 W 7_-jwl = Sn(vn -w n) 

j=-oo j=-oo 

< 3 = 5 (Vf-+ $)? 5 (q j- W7) 

j=-oo ~~~~j=-oo 

00 j-00 

? V j ( n 
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where we used the fact that 
00 

E ?n _Wn) = E(?>j-,:) 
j=-oo j=-oo 

Plunging (5.9) into (5.8), we obtain the result (5.3). 0l 
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